Princeton University

Design of a Modern Equipment General Aviation (MEGA) Aircraft

Flavio Poehlmann-Martins & Probal Mitra

April 5, 2002

FAA/NASA Joint University Program Meeting
NASA Ames Research Center

Advised by:

Prof. R. Stengel

Prof. L. Martinelli

Introduction

• Problem:

- Declining popularity of general aviation
- Proposed Solution:
 - MEGA-plane
 - A 4-seat general aviation aircraft
 - Uses component redundancy and latest technology
 - Safer, simpler to fly, and more comfortable

Outline

- Specific problems with general aviation
- MEGA-plane specifications
- General design
- Inertia properties
- Flight control system:
 - Architecture
 - Reliability analysis
- Progress summary & future work

Problems in General Aviation

• Safety:

- In 1997: GA accounted for 1,835 out of 1,975 aviation accidents (NTSB)
- 31% of these accidents involved aircraft failure (NTSB)
- 75% involved pilot error (NTSB)

Comfort:

 Typical GA planes: small cabin, lack of luggage space (e.g. Cessna Skyhawk)

Specifications

- Range: 1,000 nautical miles (1,151 miles)
- Cruise speed: 300 knots (Mach 0.5)
- Required takeoff field length: 2,000 ft
- Cruise altitude: 23,000 ft
- Thrust: 700 lbf
 - (Williams Int.FJX-2 Turbofan)

Interior

- Passenger Cabin:
 - 4 passengers
 - Pressurized
 - Total volume: 105 ft³
 - Dimensions:
 - Length: 6.7 ft
 - Width: 4.6 ft
 - Height: 3.4 ft

- Luggage Compartment:
 - Total volume: 18 ft³
 - Dimensions:
 - Length: 2.6 ft
 - Width: 3.5 ft
 - Height: 2.0 ft

Design Overview

Airduct Location

New location:

Advantages of new location:

- Shorter duct length
- Lower moments
- Redundancy (two inlets)
- Less risk at high angles of attack
- Structural support for wing
- Minimum risk of flow separation inside duct

Disadvantages:

- Increased drag (two inlets)
- Split duct (risk of engine stall)
- Stalled canard and wing-fuselage interaction may affect airduct inlet

Stability and Dynamic Performance Analysis

Goals:

- Determine stability (static and dynamic)
- Determine aircraft response to control surface actuation
- Combine these two to determine optimum aircraft geometry

Required Steps:

- Determine center of gravity location and inertia properties of aircraft
- Perform aerodynamic analysis to get force and moment coefficients

Software: Pro Engineer (Pro E)

Software: Panair

Current Progress:

- Pro E model of plane created (needs refinement)
- Panair acquired

Mass Distribution Assumptions

Goal: Determine center of gravity and inertia properties

An Actual Aircraft:

•Basic load carrying shell reinforced by frames, longerons, spars, and ribs

Model of the MEGA-Plane:

- Surface thickness modified to account for structural members
- Component weights obtained from geometry and statistics
- Densities assigned to components based on known weights and volume in model

Current Pro E Model

Components that remain to be added to model:

- Fuel tanks
- Retractable landing gear
- Avionics
- Auxiliary power unit
- Actuators and electromechanics
- Cockpit interior (seats, instruments, ...)

Current Results:

	Current model of MEGA- Plane	Compare to Navion
Weight	719.9 lbs (will increase)	2,750 lbs
I_{x}	292.5 slug-ft ²	1,048 slug-ft ²
I_y	915.25 slug-ft ²	3,000 slug-ft ²
I_z	1,117.4 slug-ft ²	3,530 slug-ft ²

Typical Weight Breakdown of Similarly Sized Aircraft

Empty: 1,744 lb

• Passengers: 880 lb

• Luggage: 355 lb

• Fuel: 561 lb

• Takeoff: 3,540 lb

Note: Numbers based on statistical information from existing GA aircraft

• Wing*: 149 lb

• Canard*: 45 lb

• Tail*: 19 lb

• Fuselage*: 326 lb

• Landing gear: 217 lb

• Engine & fuel sys: 259lb

• Avionics: 119 lb

• A/c & anti ice: 102 lb

 Flight Controls, hydraulics, and electricals: 228 lb

Miscellaneous: 281 lb

*Composites

System Architecture & Redundancy Implementation

- 1. Decide on the target aircraft reliability:
 - 1997 GA accident and flight-time statistics show 10⁻⁵ failures/flight-hour
 - Complete system reliability goal: **10**-6 **failures/flight-hour**
- 2. Set up the architecture of a generic control-surface
- 3. Calculate the failure rates of individual components and hence for each flight control-surface from past data
- 4. Add redundancy to system configuration as needed to meet target.

Data Collection & Modeling

- Probabilistic Model:
 - Exponentially distributed component lifetimes, rate λ
 - Poisson distributed failures
 - Represent failure modes as continuous-time Markov chains (Osder)
- Source: Service Difficulty Reports (SDR)

Submitted to FAA by pilots and technicians

Database: January 1995 – present (courtesy: Nelson Miller, FAA)

http://av-info.faa.gov/isdr/SDRQueryControl.ASP?vB=NS&cD=32

- Calculate mean lifetime from service hours logged since component was last serviced
- Exponential failure rate L and mean lifetime T related by:

$$T = 1/L$$

• Reliability rate R = 1 - L

Control Surface Architecture

Taxonomy of Parts

INTERNAL

- Electromechanical Devices:
 - Power Drive Unit(Motor)
 - Actuators (Gearing and Cables)
- Electronic Devices:
 - Flight Control Computer
 - CommunicationChannels
 - Pilot Input Data
 - Sensors

EXTERNAL

- Flight Control Surfaces:
 - Ailerons
 - Elevators
 - Flaps
 - Rudder

NOTE:

- "Flaperons" in final design
- Model flaps/ailerons separately
- Add required numbers for each to obtain flaperon total (increases redundancy)
- Adjacent ailerons for yaw

Reliability Data Results

(Excluding Electronic Components)

MEAN LIFETIMES

FAILURE RATES

Flight Control Surfaces

- Ailerons: 5,743.4 hrs
- Elevators: 3,770.7 hrs
- Flaps: 5,521.4 hrs
- Rudder: 5,423.9 hrs

Flight Control Surfaces

- Ailerons: 1.741x10⁻⁴/hr
- Elevators: 2.652x10⁻⁴/hr
- Flaps: 1.811x10⁻⁴/hr
- Rudder: 1.844x10⁻⁴/hr

System Parts

- Motors: 3,054.3 hrs
- Actuators: 3,630.5 hrs

System Parts

- Motors: 3.274x10⁻⁴/hr
- Actuators: 2.754x10⁻⁴/hr

Sample Reliability Estimate (I)

- Assume:
 - Electronic components (control computer, communication channels, sensors) designed with negligible failure rates
 - Each control surface depends only on:
 - Power Drive Unit
 - Actuators
 - External Surface
- Complete control system failure rates λ :
 - Ailerons: 7.7677 x 10⁻⁴/hr
 - Elevators: 8.6780 x 10⁻⁴/hr
 - Flaps: 7.8376 x 10⁻⁴/hr
 - Rudder: 7.8702 x 10⁻⁴/hr

Sample Reliability Estimate (II)

- GA aircraft with <u>no</u> redundancy:
 - 2 Ailerons (T=1051.8hrs)
 - 2 Elevators (T=882.8hrs)
 - 2 Flaps (T=1036.6hrs)
 - 1 Rudder (T=1270.6hrs)
- Each component considered "vital" reliabilities multiply in series (R = 1-1/T)
- Expected time between repair/maintenance: 261 flight-hours

NOTE:

- "Failure" means any single component malfunction (does not necessarily result in serious loss of control)
- Assumes no maintenance or servicing until a failure occurs

Progress Summary & Future Work

Summary:

- General design established
- Mass model partially complete
- Reliability data collected and analyzed for use in redundancy design

• Future Work:

- Aircraft:
 - Refinement of mass model and exterior design
 - Aerodynamic force and moment coefficients (CFD)
- Controls:
 - Finalize system configuration
 - Redundancy management laws

Acknowledgements

- Prof. Robert Stengel
- Prof. Luigi Martinelli
- Prof. Alexander Smits
- Prof. Jeremy Kasdin